
 Digital Solutions Serial Character/Graphic LCD/OLED User Manual

Page 1

Digole Serial:UART/I2C/SPI Character/Graphic LCD/OLED Display Module User
Manual

(last updated: Feb. 20th 2013)

This manual will describe most common futures for our Serial LCD/OLED displays and modules, each particular
products may have different looks, size and material, but all interface to your master circuits and control
commands are same, that means you can switch Digole Serial display in your application without any modification
of you master circuit and software.
Our Serial display products are list in figure-1, you can purchase them with lowest price at:
http://www.digole.com/index.php?categoryID=153

What benefits you if using these products in you electronic projects?

 Save lots of the I/O resources: these products only need 1 to 3 I/O pins from your master controller that
depends on the communication type you want.

 Easy to use: the commands sending to products are easy to remember and understand.

On Graphic serial products:

 Save huge memory space to store font and start screen on graphic display: in graphic product, there are 7
preloaded fonts ready for your application, and also have 16KB memory space for your user fonts, once you
uploaded the start screen or user fonts, it will stored in products.

 Using user fonts function, you can display any graphs or characters in any language
 These products already integrated graphic functions such as: draw line/rectangle/circle/image, send few

bytes of instruction to products, it will do it for you, that also save your lots of code space
 You can display contents in 4 different directions: 0º, 90º, 180º, 270º(clockwise) on same screen, the product

will map the coordinate accordingly.



FEATURES:

 Communication mode: UART/I2C/SPI,
detect your setting automatically

 Receiving buffer: 64/256 bytes
 Work with all microcontroller and

microprocessor
 Communication signal can work on 3.3V

and 5.0V TTL
 Default setting: UART baud 9600bps, I2C

0x27 address

 Low power consumption: less than 4mA (for adapter
only, completed module may higher depends on the
backlight power consumption)

 Simple command sets, easy to remember
 Simple graphic engine integrated (Graphic Products)
 7 preloaded fonts, font’s data structure full

compatible with U8Glib(Graphic Products)
 UART baud (bps): 300, 1200, 2400, 4800, 9600,

14400, 19200, 28800, 38400, 57600, 115200

http://www.digole.com/index.php?categoryID=153

 Digital Solutions Serial Character/Graphic LCD/OLED User Manual

Page 2

Figure-1

 Digital Solutions Serial Character/Graphic LCD/OLED User Manual

Page 3

What are adapters used for?

Character adapters can work with most 1602,1604,2002,2004 and 4002 character LCDs.

The Universal Graphic adapter work with 128 x 64 dots LCD, which LCD controller is ST7920 or KS0108 or

ST7565.

We didn’t sell adapters with a LCD due to you might already have LCDs or can easy to get one at low price from

somewhere, so this way gives you more flexible options on your project.

How to set up the communication mode?

There are 3 different communication modes on all products: UART, I2C and SPI, what you need is just use solder

to short the I2C/SPI jumper on adapter and make it works at I2C or SPI, if both jumpers are open, it works at

UART, you can find a similar jumper like this: on board.

Protocols:

 UART : 8-N-1, 8bits, No parity bit, 1 stop bit.

 I2C: Slave Mode, 7-bit address, default address is Hex:27, change able. This mode may give you a headache

due to more signal options in I2C, but we make it works as standard, you just need setup your I2C on

master controller as Standard Master Mode.

 SPI: 8-bits, MSB first, data on raise edge of SCK sampled; this is Standard setting on SPI too.

Character/Graphic Display Shared Command: (B-one byte, B…-Bytes)

Command Description Arduino lib function note

CL
CLear screen and set the display position to first
Column and first Row (x=0.y=0), for graphic LCD, it
also set the font to default and turn off the cursor.

clearScreen();

The module will not
execute this command
until other command
received.

CSB set CurSor on/off
enableCursor();
disableCursor();

B=0 off, B=1 on

BLB Set Back Light ON/OFF, B=0 or 1, 0 off, 1 on
backLightOn();
backLightOff();

unavailable on
Character Adapter V1.x

SOOB
Set Screen ON/OFF to save power
 B=0 or 1, 0 off, 1 on

 For GLCD only

DCB

Display Config on/off, the factory default set is on,
so, when the module is powered up, it will display
current communication mode on LCD, after you
design finished, you can turn it off

displayConfig(0);
displayConfig(1);

B=0 off, B=1 on

SBB…

Set UART Baud, B are ASCII characters, the available
values are: “300”, “1200”, “2400”,”4800”, “9600”,
“14400”, “19200”, “28800”, “38400”,
“57600”,”115200”

Set BAUD when initial
the class

When adapter power up
or reset, always start
with 9600bps Baud rate

SI2CAB Set I2C Address,the default address is 0x27, the setI2CAddress(0x34); Change address to 0x34

 Digital Solutions Serial Character/Graphic LCD/OLED User Manual

Page 4

adapter will store the new address in memory

STCRBBB
BBB

Set Text Columns and Rows, this command will
config your LCD if other than 1602 and the chip is
other than KS0066U/F / HD44780

setLCDColRow(20,4);
The last 4 B should
be“\x80\xC0\x94\xD4”

TPBB set Text Position for following display, BB are x and y setPrintPos(x,y);
Only affect the following
“TT” command

TTB…

display TexT string, the text will wraped in next row
if the current row fulled, the Text Postion will be
changed to the last char displyed, this command
ended by 0x00 or 0x0D received

print(string);
print(int);
print(char);
print(float);
print(double);
drawStr(x,y,string);

The print function in
Arduino, can also print
other data and format
the out put.

MCDB
Manual CommanD: send command B to display
bypass the adapter directCommand(0xaf);

Use it if you want to
control the display
directly

MDTB
Manual DaTa: send data B to display bypass the
adapter

directData(0x88);
Same as above

Graph Display Command: (B-one byte, B…-Bytes)

Command Description Arduino lib function note

GPBB
set Graphic Position for following draw line
command, BB are x and y in byte

setPrintPos(x,y,1); X,y=0 to 255

DMB

Set the Display Mode for on coming command, the
available values for B are: “!””~” not, “|” or, “^” xor,
“&” and, this means the next drawing pixel will logic
operation with pixel already on screen.

setMode(‘!’); Like the Bitwise
Operator in C

DIMBBBB
B…

Display Image, 1st B is x postion, 2nd is y, 3rd B is
image width, 4th is height, then following data.
Each byte present 8 pixels, if the image width not
divide 8, the last byte of a row only contain few
pixels, eg. For width of 9 to 16, you need 2 bytes for a
row

drawBitmap(x,y,width,
high,*data);

SDB
Send graphic fuction Direction, the value of B is 0 to
3, represent0 to 270 degree respectively.

setRotation(0);
undoRotation();
setRot90();
setRot180();
setRot270();

The setRotation();
will accept 0 to 3
represent0 to 270
degree respectively

CTB Set display ConTrast, only for some models setContrast(30);

FRBBBB
Draw a Filled Rectangle, 4 B are: X,Y(left top), X,Y
(right bottom)

drawBox(x,y,width,hei
ght);

In order to
compatible with
u8g, drawBox() in
Arduino use width
and height

DRBBBB
Draw a Rectangle, 4 B are: X,Y(left top), X,Y (right
bottom)

drawFrame(x,y,width,h
eight);

drawFrame () in
Arduino use width
and height

 Digital Solutions Serial Character/Graphic LCD/OLED User Manual

Page 5

CCBBBB Draw a CirCle, 4 B are: X,Y, radius, filled or not
drawCircle(x,y,r,f);
drawDisc(x,y,r);

f=1 means filled
circel

DPBBB Draw a Pixel, 3 B are: x,y and color drawPixel(x,y,color);

LNBBBB Draw a Line from (x,y) to (x1,y1), 4 B are: x,y,x1,y1
drawLine(x,y,x1,y1);
drawHLine(x,y,width);
drawVLine(x,y,height);

drawHLine()-
horizontal line
drawVLine()-
veritcal line

LTBB Draw a Line from Tast position to (x,y), 2 B are:x,y drawLineTo(x,y);

TRT Move text cursor to next line(call Text ReTurn) nextTextLine();

The y pixels moved
depending on the
font size current
using

SFB

Set Font, follow by the font number, preloaded font
number is: 6,10,18,51,120,123,0(default), user font
number is 200,201,202,203 maps to 4 user font
memory sections, you can combine adjacent sections
together is the font size >4kb(each section has 4kb in
size)

setFont(0);
We already map
preloaded font to 0
to 5 in arduino lib

SCB Set Color for following drawing setColor(1);
0 and 1 for black
white screen

MABBBB
BB

Move rectangle Area on screen to another place, the
6 B are represent: (x,y)(left- top),(w,h)(width-
height), (xoffset,yoffset).

moveArea(x,y,w,h,xoffs
et,yoffset);

ETB
Enhanced set the current Text position Back to last
char, this function will allow you display multiple
chars at same position.

setTextPosBack();

ETOBB
Enhanced set Text position Offset, the 2 B are xoffset
then yoffset, it will adjust the text position in pixels

setTextPosOffset(xoffs
et, yoffset);

0 to 255

ETPBB
Enhanced set Text Position as pixels on screen, the 2
B are x, y coordinate on screen

setTextPosAbs(x,y); X,y=0 to 255

SSSBBB…

Set Start Screen, 1st B is the lower byte of data length,
2nd B is the higher byte of data length, following by
data

uploadStartScreen(102
4, *data);

The length of data
should be: screen
Width*High/8, eg.
For 128x64 LCD,
the length is 1024

SUFBBBB
…

Set User Font, 1st B is section of memory you want to
upload, 2nd B is the lower byte of data length, 3rd B is
the higher byte of data length, following by data

uploadUserFont(1,143
4,*data);

DSSB
Display Start Screen stored in memory, also set up
Automatic start screen display or not on next power
up

displayStartScreen(1
or 0)

1= on, 0=off

DOUTB
Send a Byte to output head on board, the current
driving ability for each pin is: 25mA (Sink/Source) digitalOutput(0x1F);

The output head
are vary from
adapters

SLPB
Set Line Pattern when drawing line, only for new
version firmware later than Jan. 2013.
eg. B=0xAA is dot line, B=0xFA is dash line

setLinePattern(pattern
);

Old version not
support this
fucntion

 Digital Solutions Serial Character/Graphic LCD/OLED User Manual

Page 6

Special Command: (B-one byte, B…-Bytes)

Command Description Arduino lib function note

SLCDB

Only for multi-chip driver adapter:
B=0 or ‘0’ for ST7920
B=1 or ‘1’ for KS0108 (“E” Low, “CS1”&”CS2” Low)
B=2 or ‘2’ for ST7565
Since product after Apr. 20 2013:
B=3 or ‘3’ for KS0108 (“E” Low, “CS1”&”CS2” High)
B=4 or ‘4’ for KS0108 , follow by effective level for “E”,
“CS1” and “CS2”, eg. “SLCD4011” is same as “SLCD3”

setLCDChip(chip_num);

For Universal
Graphic Serial LCD
Adapter only

Pinout of this module connect to MCU:

PIN Description PIN Description

1 GND (0V) 2
SS: SPI mode only
chip select control in, low active

3
I2C and SPI mode:
SCK/SCL: Clock in

4

UART mode:
RX
I2C mode:
SDA
SPI mode:
SDI

5
VCC: power supply
1.8V to 5.5V depends on you LCD

 Digital Solutions Serial Character/Graphic LCD/OLED User Manual

Page 7

Connect with your master circuit:

